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Abstract—This paper is devoted to a linear autonomous differential-difference system of neutral
type with lumped delays. For such systems, we propose existence criteria for output-feedback
controllers based on incomplete measurements that ensure a given spectrum of the closed-loop
system or its exponential stabilization. In addition, we prove existence criteria for observers
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1. INTRODUCTION

The delay effect is inherent in almost all control processes. Therefore, it should be taken into
account when building engineering, economic, and other models [1–4]. The general theory of
delayed systems, as well as their applications, was studied in rather many works (for example, see
the introduction in [3, 4]). In this paper, we investigate the stabilization problem for neutral delay
systems. Such systems describe the behavior of plants and processes whose rate of evolution depends
on both their previous states and their velocities, e.g., the motion of a pendulum with a viscous
filler [2], the plunge grinding model, and plants whose dynamics are described by systems with
distributed delays (in particular, telegraph equations). Let us provide other particular examples
of stabilization problems for linear systems of neutral type. When studying the oscillations of
the current collector of a moving locomotive far from the support (placed behind the current
collector), it is necessary to consider the effect of the reflected waves of the contact wire from the
strings supporting this wire and from the support placed in front of the moving current collector.
For such a mechanical system, one naturally encounters the stabilization problem [5]. Another
example is the stabilization problem of a system arising during the translational and rectilinear
motion of some mass under the action of a linear restoring force proportional to the coordinate
and some nonconservative force [6, p. 235]. Some time is needed to trigger the system’s sensitive
elements detecting the displacement, velocity, and acceleration of the mass, as well as the relay and
servomotor; therefore, one obtains a model in the form of a linear autonomous system of neutral
type [6, p. 235].

Research into the stabilization problem of delayed systems was initiated in [7, 8] and then picked
up by many scientists [9–16] (see also the bibliography therein). However, despite a rather large
flow of publications in this direction, the stabilization problem has not been fully studied to date.
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In general, the spectrum of linear systems with aftereffect is infinite, so the analysis and subse-
quent elimination of unstable eigenvalues from the spectrum requires some computational effort [15].
In this regard, a more universal approach to stabilize the system is to assign a finite spectrum, usu-
ally consisting of numbers with negative real parts [17–19]. A significant disadvantage of this
system stabilization approach is the solvability conditions of the corresponding (spectrum assign-
ment) problem, which are more stringent compared to the stabilization conditions.

Modal controllability is a more general problem than finite spectrum assignment: it is required
to tune the coefficients of the characteristic quasipolynomial of a system [20–22].

The Lyapunov–Krasovskii and Lyapunov–Razumikhin methods are effective for analyzing the
stability of delayed systems. They allow formulating the solvability conditions of the control prob-
lem in terms of matrix inequalities [23, Chap. 3–7]. This approach to controller analysis and design
provides constructive finite-dimensional conditions for its existence and can be extended to other
problems. For example, the control law designed in [24] limits the influence of disturbances and
measurement noise; the stability conditions of input data presented therein were described in terms
of matrix inequalities.

In contrast to the above method, based to a greater extent on the differential properties of the
control system, the approach proposed in this article is of a purely algebraic nature. A polynomial
detW (p, λ), where W (p, e−ph) is the characteristic matrix of a closed-loop system (in the case of a
dynamic controller), is treated as an element of an ideal I generated by a system of polynomials,
i.e., algebraic complements to the elements of the last row of the matrix W (p, λ). Therefore, the
class of possible characteristic quasipolynomials detW (p, e−ph) can be described by computing the
Gröbner basis of the ideal I. This circumstance reduces all controller/observer design computations
to operations in the ring of polynomials. This idea was utilized in [19, 25, 26] to construct a feedback
controller ensuring, after a finite time, zero values for all components of the original open-loop
system, i.e., a finite stabilization controller [27]. (In other words, such a controller completely
damps/calms the original open-loop system.) Such a problem is solved by constructing appropriate
feedback so that the closed-loop system becomes a finite-spectrum system pointwise degenerate in
the directions corresponding to the components of the solution vector of the original system [19, 25].
These ideas were extended to systems of neutral type in [26] and systematized in the monograph [4].
The next step in exploring the finite stabilization problem was the development of output-feedback
controllers based on available output observations. For delayed single-input single-output (SISO)
systems, such a problem was considered in [27]; for multi-input systems of neutral type, in [28, 29].

In this paper, utilizing the spectrum control methods for neutral systems [15] and the block
diagrams of feedback controllers with incomplete measurements [28, 29], we prove existence criteria
for output-feedback controllers based on available output observations that solve the problems of
modal controllability and stabilization. In addition, we propose methods for designing two types
of asymptotic observers and establish criteria for their existence.

2. NOTATION

Consider a linear autonomous differential-difference system of neutral type with commensurate
delays:

ẋ(t) = A0x(t) +
m∑
j=1

(
Ajx(t− jh) +Djẋ(t− jh)

)
+

m∑
j=0

bju(t− jh), t > 0, (1)

y(t) =
m∑
j=0

c′jx(t− jh), t � 0, (2)

x(t) = η(t), t ∈ [−mh, 0]. (3)
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Here, x∈R
n is the column vector of the solution of system (1) (n � 2); 0 < h is a constant de-

lay; A0, Aj ,Dj ∈R
n×n and bj ∈R

n, c′j ∈R
n; the dash symbol (′) indicates the transpose; u is the

control input (a scalar piecewise continuous function); y is the observed output (a scalar signal).
By assumption, the initial function η is continuous with a piecewise continuous derivative. In this
case, there exists a unique continuous solution with a piecewise continuous derivative. Throughout
this paper, the initial function η is supposed to be unknown.

This study pursues the following objective: based on available observations of the output of (2),
design output-feedback controllers that ensure a given characteristic quasipolynomial of the closed-
loop system or its exponential stabilization. The remainder of this paper is organized as follows.
First (see Section 3), two types of asymptotic observers are constructed using the controller design
methods from [15]. Then (Section 4), in order to obtain feedback controllers based on available
output observations, additional loops are incorporated into the controller structure from [15] in the
form of asymptotic observers according to the principle developed in [28, 29]. Finally, an illustrative
example is given in Section 5.

Let p, λ∈C, where C is the set of complex numbers. Also, we introduce the following notation:

A(p, λ) = A0 +
m∑
j=1

(Aj + pDj)λ
j ; (4)

W (p, e−ph) = pIn −A(p, e−ph) is the characteristic matrix (In ∈R
n×n means an identity matrix

of order n); w(p, e−ph) = |W (p, e−ph)| is the characteristic quasipolynomial of the homogeneous
(u = 0) system (1). From this point onwards, |W | means the determinant of an arbitrary square
matrix W.

Let φ∈N be an arbitrary number. A quasipolynomial d(p, e−ph), where

d(p, λ) =
φ∑

i=0

θi(λ)p
i

and θi(λ) are some polynomials with θφ(0) = 1, will be called a quasipolynomial of neutral type. If
θφ(λ) = 1, we have a quasipolynomial d(p, e−ph) of delayed type as a special case. The characteristic
quasipolynomial w(p, e−ph) of the homogeneous system (1) is in general a quasipolynomial of neutral
type and degp w(p, λ) = n.

Let Rr×m[λ] and Cr×m[λ] be the sets of matrices of dimensions r ×m whose elements are
polynomials of the variable λ with real and complex coefficients, respectively. (If r = m = 1, the
superscript will be omitted.) In addition, let λh and p

D
be the shift and differentiation operators,

respectively, i.e., pi
D
λj
hf(t) = f (i)(t− jh) for a function f and integers i, j � 0.

To write the equations of the controllers and observers compactly, we introduce the set Qr×m(
Q1×1 = Q

)
, consisting of all mappings Q : f �→ Q[f ], where f(t), t∈R is an arbitrary continuous

(scalar or vector) function with a piecewise continuous derivative. (Square brackets are used to
distinguish mappings and functions.) Each mapping Q∈Qr×m is given by the following elements:
1) qi(λ)∈R

r×m[λ], i = 0, 1; 2) P = {αk±iβk, αk, βk ∈R, k = 1, n1}, representing the set of real and
complex conjugate numbers (i denotes the imaginary unit); 3) q̂ki(λ)∈C

r×m[λ], k = 1, n1, i = 1, n2

(n1 � 1, n2 � 0 are integers). Each mapping of this kind acts according to the rule

Q[f(t)] = q0(λh)f(t) + q1(λh)ḟ(t− h) +
n1∑
k=1

n2∑
i=0

h∫
0

q̂ki(λh)f(t− s)epks
si

i!
ds, t > 0, (5)
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where pk ∈P. The matrices q̂ki(λ) in (5) and the set P possess the following property: with the
Euler formula applied (eiϕ = cosϕ+ i sinϕ), the expression (5) becomes

Q[f(t)] = q0(λh)f(t) + q1(λh)ḟ(t− h) +
n̂1∑
j=0

h∫
0

rj(s)f(t− jh− s) ds, (6)

where n̂1 =maxk,i{degλ q̂ki(λ)}, rj(s) =
∑n1

k=1e
αks(cos(βks)νjk(s)+sin(βks)μjk(s)), (αk + iβk)∈P ,

and νjk(s), μjk(s)∈R
r×m[s] (degs νkj � n2, degs νkj � n2). Thus, all expressions in the relation (6)

are real numbers.

When the original system is closed by controllers containing the terms (5) (equivalently, the
terms (6)), distributed delays described by integral terms in (6) may appear in the closed-loop
system. In this case, the distributed delay terms (see the expression (5)) are associated with
the expressions q̂ki(e

−ph)
∫ h
0 e−(p−pk)ssi/i! ds in the characteristic matrix of the closed-loop system.

Calculating the integrals of these expressions and then letting λ = e−ph yield the integer fractional
rational functions [19]

h∫
0

e−(p−pk)ssi/i!ds

∣∣∣∣∣
e−ph=λ

=
(−1)i+1

i!

di

dpi

(
λ− e−pkh

e−pkh(p − pk)

)
, i = 0, 1, . . . . (7)

The expression (5) (or (6)) is associated with the matrix

Q[ept]e−pt

∣∣∣∣∣
e−ph=λ

= Q(p, λ)

in the characteristic matrix of the closed-loop system, where

Q(p, λ) = q0(λ) + pλq1(λ) + q(p, λ) (8)

and q(p, λ) is a matrix of fractional rational functions of the form ω1(p,λ)
ω2(p)

, proper in the variable p

(ω1(p, λ) and ω2(p) are polynomials with complex coefficients such that degp ω1(p, λ) < degp ω2(p)).

We further suppose that if Ŵ (p, e−ph) is the characteristic matrix of a neutral system with a dis-

tributed delay given by (6), then the matrix Ŵ (p, λ) is obtained by first calculating the integrals (7)
and then letting e−ph = λ in the resulting expression.

For a given mapping Q (5), the transposed mapping Q′ is the one obtained from (5) by replacing
q0(λ), q1(λ), and q̂ki(λ) with q′0(λ), q

′
1(λ), and q̂′ki(λ), respectively.

3. ASYMPTOTIC ESTIMATION OF THE SOLUTION

In this section, we construct observers forming asymptotic estimates of the solution of the
original system (2) from the measurements (1) with errors vanishing at a given or exponential rate,
determined by the roots of the characteristic quasipolynomial. Further, these results will be needed
to design a stabilizing output-feedback controller based on available output observations.

We define the following linear system of neutral type:

ż1(t) = A(p
D
, λh)z1(t) + L1[z2(t)] + b(λh)u(t),

ż2(t) = β0(pD
)c′(λh)z1(t) + L2[z2(t)]− β0(pD

)y(t), t > 0,
(9)

where the matrix A(p, λ) is given by (4), L1 ∈Qn×1, L2 ∈Q1×1, β0(p)∈R0[p], and R0[p] ={
1, p+ α̂ : α̂∈R

}
is the set of polynomials that have the form p + α̂ or are equal to 1. For

system (9), we choose any initial condition

z(t) = ϕ(t), t∈ [−h0, 0], (10)
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where ϕ is a continuous function with a piecewise continuous derivative and h0 is the delay of
system (9).

We take the component z1 of the solution vector z = col[z1, z2] of system (9) as an estimate
of the solution x of system (1), (2) given the control input u. Obviously, the function ζ = z1 − x,
representing the error of the estimate z1 of the solution x, is a component of the solution of the
homogeneous system

ζ̇(t) = A(p
D
, λh)ζ(t) + L1[z2(t)],

ż2(t) = β0(pD
)c′(λh)ζ(t) + L2[z2(t)], t > 0.

(11)

Consider the characteristic matrixWz(p, λ) of system (11) (the homogeneous (u = 0) system (9)):

Wz(p, λ) =

[
pIn −A(p, λ) −L1(p, λ)

−β0(p)c
′(λ) p− L2(p, λ)

]
, (12)

where Li(p, λ) = Li[e
pt]e−pt. Let us introduce the polynomial

g(p, λ) =
n+1∑
i=0

pigi(λ), gi(λ)∈R[λ], gn+1(0) = 1. (13)

Generally speaking, the quasipolynomial d(p, e−ph) is of neutral type.

Definition 1. System (1), (2) is said to have an observer (9) with a given characteristic polyno-
mial if, for any polynomial (13), there exist L1 ∈Qn×1, L2 ∈Q1×1, and β0(p)∈R0[λ] such that∣∣Wz(p, λ)

∣∣ = g(p, λ). (14)

Remark 1. The main goal of observer design is to obtain an estimate for the solution of an
original system. Therefore, when designing an observer with a given characteristic quasipolynomial,
the quasipolynomial (13) should be chosen so that system (11) be asymptotically or exponentially
stable. Regarding the computational complexity of solving system (11), the most convenient choice
is a polynomial (13) that does not depend on the variable λ and has roots with negative real parts.

Definition 2. System (1), (2) is said to have an exponentially stable observer (9) if there exist
L1 ∈Qn×1, L2 ∈Q1×1, and β0(p)∈R0[p] such that system (11) is exponentially stable.

Remark 2. A linear homogeneous autonomous system of neutral type is exponentially stable if
and only if [14] its characteristic quasipolynomial possesses exponential stability (i.e., the roots
pi of the characteristic equation satisfy the inequality Re pi < ε ∃ε < 0). In this case, the differ-
ence equation describing the jump behavior of the first derivatives of the solution is exponentially
stable [14]. We illustrate the above on an example of the system

ẋ(t) = Q[x(t)], (15)

where the mapping Q is given by (6). (All matrices in (6) have dimensions n×n.) Let W0(p, e
−ph)

be the characteristic matrix of system (15), W0(p, λ) = p
(
In − λq1(λ)

)
− q0(λ) − q(p, λ) (see (8)).

We introduce the sets

Δ0 =
{
p∈C :

∣∣∣W0(p, e
−ph)

∣∣∣ = 0
}
, Δ1 =

{
λ∈C :

∣∣∣In − λq1(λ)
∣∣∣ = 0

}
. (16)

For the exponential stability of system (15), it is necessary and sufficient that

Re p < −ε ∃ε > 0, p∈Δ0. (17)

In this case, the exponential stability of the difference equation implies

|λ| > 1, λ∈Δ1. (18)

Consider system (1). Denoting D(λ) =
∑m

j=1 λ
jDj, we formulate existence criteria for an ob-

server with a given characteristic quasipolynomial.
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Theorem 1. For system (1), (2) to have an observer (9) with a given characteristic quasipoly-
nomial, it is necessary and sufficient that

rank

[
W (p, e−ph)

c′(e−ph)

]
= n ∀p∈C, rank

[
In −D(λ)

c′(λ)

]
= n ∀λ∈C. (19)

The proof of this result is provided in the Appendix.

The following theorem represents an existence criterion for an exponentially stable observer.

Theorem 2. For system (1), (2) to have an exponentially stable observer (9), it is necessary and
sufficient that

rank

[
W (p, e−ph)

c′(e−ph)

]
= n ∀p∈C, Re p � ε1, ∃ε1 < 0,

rank

[
In −D(λ)

c′(λ)

]
= n ∀λ∈C, |λ| � 1.

(20)

See the proof in the Appendix.

4. MODAL CONTROLLABILITY AND EXPONENTIAL STABILIZATION

We define a dynamic output-feedback controller based on available output measurements:

u(t) = α0(pD)x1(t),

ẋ1(t) = Q11[x1(t)] +Q12[x2(t)],

ẋ2(t) = b(λh)α0(pD)x1(t) +A(pD , λh)x2(t) +Q23[x3(t)],

ẋ3(t) = α1(pD)c
′(λh)x2(t) +Q33[x3(t)]− α1(pD)y(t), t > 0,

(21)

where x1, x3 ∈R and x2 ∈R
n are auxiliary variables; Q11 ∈Q, Q12 ∈Q1×n, Q23 ∈Qn×1, Q33 ∈Q,

and αi(p)∈R0[p], i = 0, 1.

Let us close system (1), (2) with the controller (21). Obviously, system (1), (2), (21) is linear
inhomogeneous autonomous of neutral type with commensurable lumped and distributed delays,
and its inhomogeneous part depends on the output y(t). Following (2), we replace the function y(t)
in the inhomogeneous part with c′(λh)x(t) to obtain the homogeneous one. The characteristic
matrix W (p, λ) of this homogeneous system is given by

W (p, λ) =

⎡⎢⎢⎢⎢⎣
pIn −A(p, λ) −α0(p)b(λ) 0n×n 0n×1

01×n p−Q11(p, λ) −Q12(p, λ) 0

0n×n −α0(p)b(λ) pIn −A(p, λ) −Q23(p, λ)

α1(p)c
′(λ) 0 −α1(p)c

′(λ) p−Q33(p, λ)

⎤⎥⎥⎥⎥⎦ , (22)

where Qij(p, λ) = Qij [e
pt]e−pt and 0i×j ∈R

i×j (i, j > 1) is a zero matrix of appropriate dimensions.

Definition 3. System (1), (2) is said to be modally controllable (by the output) if, for any
polynomial

χ(p, λ) = χ1(p, λ)χ2(p, λ), (23)

where χk(p, λ) =
∑n+1

i=0 piχki(λ), χki∈R[λ], k = 1, 2, and χk n+1(0) = 1, there exists a controller (21)
such that the characteristic matrix of the closed-loop system (1), (2), (21) satisfies∣∣∣W (p, λ)

∣∣∣ = χ(p, λ). (24)

Generally speaking, the quasipolynomial χ(p, e−ph) is of neutral type.
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Definition 4. System (1), (2) is said to be exponentially stabilizable (by the output) if there
exists a controller (21) such that the closed-loop system (1), (2), (21) is exponentially stable.

The following theorems are criteria for the modal controllability and exponential stabilizability
of system (1), (2) in the class of controllers (21).

Theorem 3. System (1), (2) is modally controllable in the class of controllers (21) if and only if

rank
[
W (p, e−ph), b(e−ph)

]
= n ∀p∈C,

rank
[
In −D(λ), b(λ)

]
= n ∀λ∈C,

(25)

and conditions (19) hold.

See the proof in the Appendix.

Theorem 4. System (1), (2) is exponentially stabilizable in the class of controllers (21) if and
only if

rank
[
W (p, e−ph), b(e−ph)

]
= n ∀p∈C, Re p � ε0, ∃ε0 < 0,

rank
[
In −D(λ), b(λ)

]
= n ∀λ∈C, |λ| � 1,

(26)

and conditions (20) hold.

See the proof in the Appendix.

5. EXAMPLE

Let system (1), (2) be of the second order and be described by the following matrices and delay:

A(p, λ) =

⎡⎢⎢⎣−
1

2
pλ −3 + λ

−1

3
− 5

12
λ

⎤⎥⎥⎦ , b(λ) =

[
0

2λ− λ2

]
,

c(λ) = [0, −1], h = ln 2.

(27)

The original system with the matrices (27) has an infinite spectrum, and its characteristic
quasipolynomial (λ = e−ph) is given by

w(p, λ) =
1

2
p2(λ+ 2) +

5

24
pλ(λ+ 2)+

λ

3
− 1.

The quasipolynomial w(p, e−ph) has a positive root since w(0, 1) = −2
3 < 0; lim

p→+∞
w(p, e−ph) = +∞.

Thus, the unperturbed system is not exponentially stable.

Obviously, the first condition in (25) is violated for p = −1 and the second for λ = −1. This
means the validity of conditions (26). The first condition in (19) also holds but the second condition
fails for λ = −2; therefore, conditions (20) are true. Thus, the results of [28] (the design of an in-
complete measurements-based controller ensuring complete stabilization (simultaneously finite and
asymptotic stabilization and finite spectrum assignment) or those of [29] (only finite stabilization)
are inapplicable here. However, the conditions of Theorem 4 are satisfied, so we can construct
a controller based on incomplete measurements to exponentially stabilize the closed-loop system.
Looking ahead, note that the set of roots of the characteristic quasipolynomial of this closed-loop
system contains the points p = −1 and the roots of the equation e−ph = λ with λ = −2, at which
conditions (19), (25) are violated.
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Now we proceed to the controller design (21).

1. Following [15], we construct a controller (A.5). Necessary calculations [15] yield

u(t) = x1(t),

ẋ1(t) =

[
5

6
− 1

6
λh

]
ẋ1(t− h) +

[
−6 +

65

12
λh −

29

24
λ2
h

]
x1(t)

+

h∫
0

(−12 + 6λh)x1(t− s)esds+

[−5

72
,
5

72

]
ẋ(t− h)

+

[−223

72
− 2λh,

25

3
+

185

288
λh

]
x(t) +

h∫
0

[
1,−9

2

]
esx(t− s)ds.

(28)

In this case, the matrix (A.6) has the form

Wx(p, λ) =

⎡⎢⎢⎢⎢⎣
p+

pλ

2
3− λ 0

1

3
p+

5

12
λ (2− λ)λ

ν1(p, λ) ν2(p, λ) ν3(p, λ)

⎤⎥⎥⎥⎥⎦ , (29)

where

ν1(p, λ) =
5pλ

72
− 1− 2λ

p− 1
+

223

72
+ 2λ, ν2(p, λ) = −5pλ

72
+

9(1− 2λ)

2(p − 1)
− 25

3
− 185λ

288
,

ν3(p, λ) = p− 5pλ

6
+

pλ2

6
+ 6

(1 − 2λ)(2 − λ)

p− 1
+ 6− 65λ

12
+

29λ2

24
.

Straightforward calculations finally lead to
∣∣Wx(p, λ)

∣∣ = (1− λ
3 )(1−

λ
2 )(1 +

λ
2 )(p+1)(p+2)(p+3).

2. We construct an exponentially stable observer (9). For this purpose, following the proof of
Theorem 4, we construct a controller (A.2) for system (A.1) that exponentially stabilizes the closed-
loop system (9), (A.2). Then, according to (A.3), we obtain an exponentially stable observer (9)
with

L1[z2] =

⎡⎢⎢⎣
−79

4
λh −

31

24
λ2
h −

5

24
λ3
h − 36

25

288
λ3
h −

155

144
λ2
h +

8

3
λh + 12

⎤⎥⎥⎦ z2(t),
L2[z2] =

−1

2
ż2(t− h) +

(
5

24
λ2
h −

31

12
λh − 6

)
z2(t).

The characteristic matrix (12) has the form

Wz(p, λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p(2 + λ)

2
3− λ

79

4
λ+

31

24
λ2 +

5

24
λ3 + 36

1

3

5λ

12
+ p − 25

288
λ3 +

155

144
λ2 − 8

3
λ− 12

0 1 p+
1

2
pλ− 5

24
λ2 +

31

12
λ+ 6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(30)

and
∣∣Wz(p, λ)

∣∣ = (
1 + 1

2λ
)2

(p+ 3)(p + 2)(p + 1).
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3. Using the parameters of the above controller and observer, we construct a controller (21):

u(t) = x1(t),

ẋ1(t) =

[
5

6
− 1

6
λh

]
ẋ1(t− h) +

[
−6 +

65

12
λh −

29

24
λ2
h

]
x1(t)

+

h∫
0

(−12 + 6λh)x1(t− s)esds+

[−5

72
,
5

72

]
ẋ2(t− h)

+

[−223

72
− 2λh,

25

3
+

185

288
λh

]
x2(t) +

h∫
0

[
1,−9

2

]
esx(t− s)ds,

ẋ2(t) =

[
0

2λh − 2λ2
h

]
x1(t) +

⎡⎣12 0

0 0

⎤⎦ ẋ2(t− h) +

⎡⎣ 0 −3 + λh

−1

3
− 5

12
λh

⎤⎦x2(t)

+

⎡⎢⎢⎣
−79

4
λh −

31

24
λ2
h −

5

24
λ3
h − 36

25

288
λ3
h −

155

144
λ2
h +

8

3
λh + 12

⎤⎥⎥⎦ x3(t),

ẋ3(t) =
−1

2
ẋ3(t− h) +

(
5

24
λ2
h −

31

12
λh − 6

)
x3(t) +

(
[0, 1]x2(t)− y(t)

)
.

(31)

The matrix of the closed-loop system (22) has the form

W (p, λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p (2 + λ)

2
3− λ 0 0 0 0

1

3

5λ

12
+ p (2− λ)λ 0 0 0

0 0 ν3(p, λ) ν1(p, λ) ν2(p, λ) 0

0 0 0
p (2 + λ)

2
3− λ

79

4
λ+

31

24
λ2 +

5

24
λ3 + 36

0 0 (2− λ)λ
1

3

5λ

12
+ p − 25

288
λ3 +

155

144
λ2 − 8

3
λ− 12

0 −1 0 0 1 p+
1

2
pλ− 5

24
λ2 +

31

12
λ+ 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Straightforward calculations yield

∣∣W (p, λ)
∣∣ = (

1− 1

2
λ

)(
1− 1

3
λ

)(
1 +

1

2
λ

)3

(p+ 3)2(p+ 2)2(p+ 1)2.

6. CONCLUSIONS

This paper has been devoted to linear autonomous differential-difference systems of neutral type
with a scalar control input and an observable output. For such systems, we have derived modal
controllability and exponential stabilizability criteria in the class of output-feedback controllers
(function of the observed output). Modal controllability provides wider system design capabilities
compared to stabilizability. In particular, it is possible to specify the rate of convergence to zero
(vanishing) for the system solution by tuning the coefficients of the characteristic quasipolynomial.
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Alternatively, it is possible to ensure a finite spectrum, making the system simpler from a (subse-
quent) control standpoint. However, the requirements for the system parameters imposed by the
modal controllability criterion are more stringent than the conditions of exponential stabilizability.

Two types of asymptotic observers have been developed, namely, an observer with a given char-
acteristic quasipolynomial and an exponentially stable observer. The behavior of the estimation
errors of the observers is described by a linear homogeneous autonomous system of neutral type.
Moreover, for the first type of observer, it is possible to specify a desired characteristic quasipoly-
nomial of the system describing the error before its design (i.e., to set in advance the rate of
convergence of the observer’s estimate to the solution of the original system). In the case of the
second type of observer, the system describing the estimation error of the solution is exponentially
stable. Note that it is generally impossible to control the coefficients of the characteristic equa-
tion. However, the exponential stability of the system describing the estimation error ensures the
convergence of the estimate to the solution at an exponential rate.

The methods for constructing controllers and observers developed in this study involve stan-
dard operations with polynomials and polynomial matrices and are easily implemented in modern
computer algebra packages.
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APPENDIX

Proof of Theorem 1.

We introduce the neutral system

ẋ(t) = A′(p
D
, λh)x(t) + c′(λh)u(t), t > 0, (A.1)

and define the controller

u(t) = β1(pD)x1(t), ẋ1(t) = K1[x(t)] +K2[x1(t)], t > 0, (A.2)

where x1 ∈R is an auxiliary variable, K1 ∈Q1×n, K2 ∈Q, and β1(p)∈R0[p].

For any given quasipolynomial (13) there exists a controller (A.2) such that
∣∣W1(p, λ)

∣∣ = g(p, λ)
if and only if conditions (19) are valid [15]. Here, W1(p, e

−ph) is the characteristic matrix of the
closed-loop system (A.1), (A.2):

W1(p, λ) =

[
pIn −A′(p, λ) −β1(p)c

′(λ)
−K1(p, λ) p−K2(p, λ)

]
,

with Ki(p, λ) = Ki[e
pt]e−pt

∣∣∣
e−ph

. Letting

β0(p) = β1(p), L1 = K′
1, L2 = K2 (A.3)

in equations (9) gives
(
W1(p, λ)

)′
= Wz(p, λ). Therefore,

∣∣Wz(p, λ)
∣∣ = g(p, λ), which implies the

existence of an observer (9) with the desired characteristic quasipolynomial.

Proof of Theorem 2. For system (A.1) there exists a controller (A.2) making the closed-loop
system exponentially stable if and only if conditions (20) are valid [15]. Therefore, repeating the

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 6 2025



526 KHARTOVSKII et al.

proof of Theorem 1 with the necessary modifications, we show the existence of an exponentially
stable observer (9). The proof of this theorem is complete.

Proof of Theorem 3.

Necessity. Conditions (25) [15] are necessary and sufficient for modal controllability in the class
of feedback controllers based on measurements of the state vector x. Therefore, conditions (25) are
necessary for modal controllability in the class of feedback controllers based on measurements of
the observed output (2).

Let us prove the necessity of conditions (19). Suppose that system (1), (2) is modally controllable
in the class of controllers (21). By assumption, the controller (21) ensures equality (24) for some
given polynomial (23). Consider system (A.1) and define a controller of the form

u(t) = −α1(pD)x1(t),

ẋ1(t) = Q′
33[x1(t)] +Q′

23[x2(t)],

ẋ2(t) = α1(pD)c
′(λh)x1(t) +A′(pD , λh)x2(t) +Q′

12[x3(t)],

ẋ3(t) = α0(pD)b
′(λh)

(
x(t) + x2(t)

)
+Q′

11[x3(t)], t > 0.

(A.4)

Let Ŵ (p, e−ph) be the characteristic matrix of system (A.1),(A.4). Obviously, the matrix
(
W (p, λ)

)′
is obtained from the matrix Ŵ (p, λ) by permuting the rows and columns of blocks with numbers 2

and 4. Therefore, we write E24Ŵ (p, λ)E−1
24 =

(
W (p, λ)

)′
, where the matrix E24 swaps the rows

of suitable-size blocks with numbers 2 and 4 when multiplied by any matrix on the left. Hence,∣∣Ŵ (p, λ)
∣∣ = χ(p, λ), meaning that system (A.1) is modally controllable in the sense of [15] (i.e.,

by a feedback controller based on the state function x), and conditions (19) express a modal
controllability criterion for system (A.1). The necessity of conditions (19) and (25) is established.

Sufficiency. Consider a given polynomial (23). We prove the sufficiency part by providing a
design scheme for a controller (21) ensuring equality (24).

1. We define a state-feedback controller of the form

u(t) = α0(pD)x1(t), ẋ1(t) = Q12[x(t)] +Q11[x1(t)], t > 0. (A.5)

The notation in (A.5) is the same as in (21). Due to conditions (25), for any polynomial χ1(p, λ) (23)
there exists [9] a controller (A.5) such that the characteristic matrix Wx(p, e

−ph) of the closed-loop
system (1), (A.5),

Wx(p, λ) =

[
pIn −A(p, λ) −b(λ)α0(p)
−Q12(p, λ) p−Q11(p, λ)

]
, (A.6)

satisfies the equality ∣∣Wx(p, λ)
∣∣ = χ1(p, λ). (A.7)

Thus, the controller (A.5) has been constructed.

2. Under condition (19) (see Theorem 1), for any given polynomial χ2(p, λ) (23) there exists an
observer (9) with a given characteristic quasipolynomial such that the characteristic matrix (12)
satisfies the relation ∣∣Wz(p, λ)

∣∣ = χ2(p, λ). (A.8)

Thus, the observer (9) has been constructed.
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3. Using the parameters of the controller (A.5) and observer (9), we write the controller (21)
with the additional assignment

Q23 = L1, Q33 = L2. (A.9)

Let us show equality (24) for the characteristic matrix W (p, e−ph) of the closed-loop system (1),
(2), (21). For this purpose, we introduce the matrix

Γ =

⎡⎢⎢⎢⎢⎣
In 0n×1 0n×n 0n×1

01×n 1 01×n 0

−In 0n×1 In 0n×1

01×n 0 01×n 1

⎤⎥⎥⎥⎥⎦ . (A.10)

Direct verification yields

ΓW (p, λ)Γ−1 = W̃ (p, λ), (A.11)

W̃ (p, λ) =

⎡⎢⎢⎢⎢⎣
pIn −A(p, λ) −b(λ)α0(p) 0n×n 0n×1

−Q12(p, λ) p−Q11(p, λ) −Q12(p, λ) 01×1

0n×1 0 pIn −A(p, λ) −Q23(p, λ)

0n×1 0 −α1(p)c
′(λ) p−Q33(p, λ)

⎤⎥⎥⎥⎥⎦ .

From equalities (A.6), (A.7), (A.8), (A.11), and (12) it follows that W (p, λ) = ΓW (p, λ)Γ−1 =
χ(p, λ). The proof of Theorem 3 is complete.

Proof of Theorem 4. The idea of proving Theorem 4 is quite similar to that of proving Theorem 3,
so we will present only its brief scheme.

Necessity. 1. Suppose that system (1), (2) closed by the controller (21) is exponentially stable.
We form the sets Δ0 and Δ1 from Remark 2 (see (16)). If the first condition in (26) is violated,
then for any ε0 < 0 there exists p0 ∈C, Re p0 � ε0, such that rank

[
W (p0, e

−p0h), b(e−poh)
]
< n.

In this case, for any controller of the form (21), the number p0 remains in the spectrum of the
closed-loop system (1), (2), (21), i.e., p0 ∈Δ0. Therefore, condition (17) fails and, consequently,
system (1), (2), (21) cannot be exponentially stable.

If the second condition in (26) is violated, then there exists λ0 ∈C, |λ0| � 1, such that
rank

[
D(λ0)

]
< n. Obviously, for any controller of the form (21), the closed-loop system (1), (2), (21)

satisfies λ0 ∈Δ1. Hence, condition (18) is violated. The necessity of conditions (26) is established.

2. Now we prove the necessity of conditions (20). Consider system (A.1) closed by the con-
troller (A.4). Assuming sequentially that the first or second conditions in (20) are violated, similar
to (1), we show that the closed-loop system (A.1), (A.4) cannot be exponentially stable.

Sufficiency. We describe a design scheme for the controller (21) and then prove the exponential
stability of the closed-loop system.

1. Following [9], we construct the controller (A.5) exponentially stabilizing the closed-loop
system (1), (A.5). Conditions (26) ensure the possibility of constructing such a controller. In this
case, the characteristic matrix of the closed-loop system (1), (A.5) has the form (A.6).

2. We construct the exponentially stable observer (9). Conditions (20) ensure the possibility of
constructing such an observer. In this case, the characteristic matrix of the homogeneous system (9)
has the form (12).

3. Using the parameters of the controller (A.5) and observer (9), we write the controller (21)
with the matrices assigned by (A.9).
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Let us show the exponential stability of system (1), (21). For this purpose, we apply the following
nondegenerate transformation of the variables:

col[x, x1, x2, x3] = Γ−1col[x̃, x̃1, x̃2, x̃3],

with the matrix Γ given by (A.10). This transformation yields a new system with the characteristic
matrix W̃ (p, e−ph), where the matrix W̃ (p, λ) has the form (A.11). The resulting system will be
called the system Σ̃.

Due to the representation of the matrix W̃ (p, λ), the components x̃2 and x̃3 are determined by
a separate system (a subsystem of the system Σ̃) whose characteristic matrix coincides with (12).
Therefore, the system determining the components x̃2 and x̃3 is exponentially stable. In other
words, there exist positive constants γ1 and γ2 such that

‖x̃i(t)‖ � γ1e
−γ2t, t > 0, i = 2, 3. (A.12)

Consider the system corresponding to the first two rows of the blocks of the matrix W̃ (p, λ).
Since the components x̃2 and x̃3 are determined separately, they can be treated as an inhomogeneous
part in the system under consideration. Then the components x̃ and x̃1 satisfy the inhomogeneous
system for which the characteristic matrix of the corresponding homogeneous system coincides
with (A.6). Hence, the above homogeneous system is exponentially stable and, in view of (A.12),
there exist positive constants γ3 and γ4 such that

‖x̃(t)‖ � γ3e
−γ4t, ‖x̃i(t)‖ � γ3e

−γ4t, t > 0, i = 1, 3. (A.13)

These inequalities imply the exponential stability of the system Σ̃ and, consequently, of sys-
tem (1), (21). The proof of Theorem 4 is complete.
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